Smart Containment

Extending the Life of the Data Center

The Cooling Trend

 \rightarrow Need new tools to closely couple cooling to demand

Air Mixing Lowers Efficiency

- Low ${\boldsymbol{\Delta}}\text{-}\mathsf{T}$ impairs CRAH efficiency
- Capacity unnecessarily limited
- 60% of cold air is wasted
- Typical 3X over provisioned
- Free mixing prevents tight supply control

Containment Stops Mixing

- High $\Delta\text{-}T$ boosts CRAH efficiency
- Reduces operating expenses
- Capacity expands
- Eliminates hotspots
- Isolated airflow enables tight supply control

How Does Containment Work?

- Airflow isolation barriers prevent hot return air from mixing with cold supply air
- The hot return air stays hot, increasing the return air temperature to the CRAH units
- The ∆-T across the CRAH increases which results in more efficient cooling
- Makes the supply air temperature more uniform across the server inlets, improving reliability

Containment Systems

The Great Debate – Which Aisle Do You Contain?

Hot Aisle

- Keeps Δ-T highest by preventing cooling of the hot air
- Comfort in open area
- Switch gear
- Easy to balance zones

VS.

Cold Aisle

- More direct path of cold air to servers
- Positive air pressure
- Comfort in hot aisle
- More deployment
 options

Containment Architectures

Smart Containment: The Cooling Efficiency Stack

	CONTROL
Barriers above racks	Fan speed
Doors on aisle ends	Set points
Blanking panels	 Chilled water flow
Filling floor gaps	 Economizer hours
Plenum returns with ducted CRAHs	CRAH on/off
	 CONTAIN Barriers above racks Doors on aisle ends Blanking panels Filling floor gaps Plenum returns with ducted CRAHs

Monitor & Control

Wireless Sensor Network

Adaptive Control Measures

- Automatic start/stop of CRAC units
- Adjust variable speed fans
- Change CRAC set points
- Increase chilled water set points
- Manage the usage of air side economizers

Two Sets of Gains: 1) Containment and 2) Control

Baseline

- No containment
- High degree of air mixing
- High inlet temperatures

After Containment

- Cold aisle contained
- Higher Δ -T
- No change to CRAHs

With Control

- Controlled CRAHs
- ASHRAE inlet temperatures
- Increased return temperatures

Published Case Studies

LBNL

Fan speed reduction of 75% 12% reduction in cooling energy

Altera

Server inlet variance reduced from 14°F to 2°F 12.5% energy reduction

Yahoo

Supply air temperature increased 21[°]F 21% reduction in cooling energy

Published by Accenture/Silicon Valley Leadership Group These are not Polargy projects

Compelling ROI

- Energy savings from reduced fan speeds and lower demand on chilled water plant
- Reduced heat related failures
- Power utility rebates
- More capacity out of the data center

WWW.POLARGY.COM

